A new two-variable generalization of the chromatic polynomial

نویسندگان

  • Klaus Dohmen
  • André Poenitz
  • Peter Tittmann
چکیده

Let P(G;x,y) be the number of vertex colorings φ : V →{1, ...,x} of an undirected graph G = (V,E) such that for all edges {u,v} ∈ E the relations φ(u)≤ y and φ(v)≤ y imply φ(u) 6= φ(v). We show that P(G;x,y) is a polynomial in x and y which is closely related to Stanley’s chromatic symmetric function, and which simultaneously generalizes the chromatic polynomial, the independence polynomial, and the matching polynomial of G. We establish two general expressions for this new polynomial: one in terms of the broken circuit complex, and one in terms of the lattice of forbidden colorings. Finally, we give explicit expressions for the generalized chromatic polynomial of complete graphs, complete bipartite graphs, paths, and cycles, and show that P(G;x,y) can be evaluated in polynomial time for trees and graphs of restricted pathwidth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new result on chromaticity of K4-homoemorphs with girth 9

For a graph $G$, let $P(G,lambda)$ denote the chromatic polynomial of $G$. Two graphs $G$ and $H$ are chromatically equivalent if they share the same chromatic polynomial. A graph $G$ is chromatically unique if any graph chromatically equivalent to $G$ is isomorphic to $G$. A $K_4$-homeomorph is a subdivision of the complete graph $K_4$. In this paper, we determine a family of chromatically uni...

متن کامل

Chromatic polynomials of some nanostars

Let G be a simple graph and (G,) denotes the number of proper vertex colourings of G with at most  colours, which is for a fixed graph G , a polynomial in  , which is called the chromatic polynomial of G . Using the chromatic polynomial of some specific graphs, we obtain the chromatic polynomials of some nanostars.

متن کامل

ul 2 00 5 Set maps , umbral calculus , and the chromatic

Some important properties of the chromatic polynomial also hold for any polynomial set map satisfying pS(x + y) = ∑ T⊎U=S pT (x)pU (y). Using umbral calculus, we give a formula for the expansion of such a set map in terms of any polynomial sequence of binomial type. This leads to several new expansions of the chromatic polynomial. We also describe a set map generalization of Abel polynomials.

متن کامل

The Path-Cycle Symmetric Function of a Digraph

Recently, Stanley [21] has defined a symmetric function generalization of the chromatic polynomial of a graph. Independently, Chung and Graham [4] have defined a digraph polynomial called the cover polynomial which is closely related to the chromatic polynomial of a graph (in fact, as we shall see, the cover polynomial of a certain digraph associated to a poset P coincides with the chromatic po...

متن کامل

A Quasisymmetric Function Generalization of the Chromatic Symmetric Function

The chromatic symmetric function XG of a graph G was introduced by Stanley. In this paper we introduce a quasisymmetric generalization X G called the k-chromatic quasisymmetric function of G and show that it is positive in the fundamental basis for the quasisymmetric functions. Following the specialization of XG to χG(λ), the chromatic polynomial, we also define a generalization χ k G(λ) and sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics & Theoretical Computer Science

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2003